
PHP Tutorial

PHP enables you to create dynamic web pages, develop websites, and generate dynamic content.

You’ll also be able to create contact forms, forums, blogs, picture galleries, surveys, social

networks, and a whole lot more.

PHP: Hypertext Preprocessor (PHP) is a free, highly popular, open source scripting language.

PHP scripts are executed on the server.

Just a short list of what PHP is capable of:

- Generating dynamic page content

- Collecting form data

- Adding, deleting, and modifying information stored in your database

- Creating, opening, reading, writing, deleting, and closing files on the server

- and much more!

PHP has enough power to work at the core of WordPress, the busiest blogging system on the

web. It also has the degree of depth required to run Facebook, the web's largest social network!

PHP is a Server side programming language

Why PHP

PHP runs on numerous, varying platforms, including Windows, Linux, Unix, Mac OS X, and so on.
PHP is compatible with almost any modern server, such as Apache, IIS, and more.
PHP supports a wide range of databases.
PHP is free!

PHP Syntax

A PHP script starts with <?php and ends with ?>:
<?php
 // PHP code goes here
?>

Echo

PHP has a built-in "echo" function, which is used to output text.
In actuality, it's not a function; it's a language construct. As such, it does not require
parentheses.

Let's output a text.
<?php
 echo "I love PHP!";
?>

The text should be in single or double quotation marks.

PHP Syntax

You can also use the shorthand PHP tags, <? ?>, as long as they're supported by the server.

<?
 echo "Hello World!";
?>

However, <?php ?>, as the official standard, is the recommended way of defining PHP scripts.

<?php … ?> is the most widely recommended way to use PHP tags?

PHP Statements

Each PHP statement must end with a semicolon.
<?
 echo "A";
 echo "B";
 echo "C";
?>

PHP statements end with semicolons (;).
Forgetting to add a semicolon at the end of a statement results in an error.

Echo

HTML markup can be added to the text in the echo statement.
<?php
 echo "This is a bold text.";
?>

Result:

Comments
In PHP code, a comment is a line that is not executed as part of the program. You can use
comments to communicate to others so they understand what you're doing, or as a reminder to
yourself of what you did.

A single-line comment starts with //:
<?php
 echo "<p>Hello World!</p>";
 // This is a single-line comment
 echo "<p>I am learning PHP!</p>";
 echo "<p>This is my first program!</p>";
?>

Result:

Multi-Line Comments
Multi-line comments are used for composing comments that take more than a single line.

A multi-line comment begins with /* and ends with */.

<?php

 echo "<p>Hello World!</p>";

 /*

 This is a multi-line comment block

 that spans over

 multiple lines

 */

 echo "<p>I am learning PHP!</p>";

 echo "<p>This is my first program!</p>";

?>

Adding comments as you write your code is a good practice. It helps others understand your

thinking and makes it easier for you to recall your thought processes when you refer to your code

later on.

Variables
Variables are used as "containers" in which we store information.
A PHP variable starts with a dollar sign ($), which is followed by the name of the variable.
$variable_name = value;

Rules for PHP variables:

• A variable name must start with a letter or an underscore

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

• Variable names are case-sensitive ($name and $NAME would be two different variables)

For example:
<?php
 $name = 'John';
 $age = 25;
 echo $name; //Outputs 'John'
?>

In the example above, notice that we did not have to tell PHP which data type the variable is.

PHP automatically converts the variable to the correct data type, depending on its value.

Unlike other programming languages, PHP has no command for declaring a variable. It is created

the moment you first assign a value to it.

Constants
Constants are similar to variables except that they cannot be changed or undefined after they've
been defined.
Begin the name of your constant with a letter or an underscore.
To create a constant, use the define() function:
define(name, value)

Parameters:
name: Specifies the name of the constant;
value: Specifies the value of the constant;

The example below creates a constant:
<?php
 define("MSG", "Hello World!");
 echo MSG; // Outputs "Hello World!"
?>

No dollar sign ($) is necessary before the constant name.

Data Types
Variables can store a variety of data types.

Data types supported by PHP: String, Integer, Float, Boolean, Array, Object, NULL, Resource.

PHP String
A string is a sequence of characters, like "Hello world!"

A string can be any text within a set of single or double quotes.

<?php

 $string1 = "Hello world!"; //double quotes

 $string2 = 'Hello world!'; //single quotes

?>

You can join two strings together using the dot (.) concatenation operator.

For example: echo $s1 . $s2

PHP Integer
An integer is a whole number (without decimals) that must fit the following criteria:

- It cannot contain commas or blanks

- It must not have a decimal point

- It can be either positive or negative

<?php

 $int1 = 42; // positive number

 $int2 = -42; // negative number

?>

PHP Boolean
A Boolean represents two possible states: TRUE or FALSE.

<?php

 $x = true; $y = false;

?>

Booleans are often used in conditional testing.

Most of the data types can be used in combination with one another.

In this example, string and integer are put together to determine the sum of two numbers.

<?php

 $str = "10";

 $int = 20;

 $sum = $str + $int;

 echo ($sum); // Outputs 30

?>

PHP automatically converts each variable to the correct data type, according to its value. This is

why the variable $str is treated as a number in the addition.

Variables Scope
PHP variables can be declared anywhere in the script.
The scope of a variable is the part of the script in which the variable can be referenced or used.

PHP's most used variable scopes are local, global.
A variable declared outside a function has a global scope.
A variable declared within a function has a local scope, and can only be accessed within that
function.

Consider the following example.

<?php
 $name = 'David';
 function getName()
 {
 echo $name;
 }

 getName();
 // Error: Undefined variable: name
?>

This script will produce an error, as the $name variable has a global scope, and is not accessible

within the getName() function.

Arrays
An array is a special variable, which can hold more than one value at a time.
If you have a list of items (a list of names, for example), storing them in single variables would look
like this:
$name1 = "David";
$name2 = "Amy";
$name3 = "John";

But what if you have 100 names on your list? The solution: Create an array!

Numeric Arrays
Numeric or indexed arrays associate a numeric index with their values.
The index can be assigned automatically (index always starts at 0), like this:
$names = array("David", "Amy", "John");

As an alternative, you can assign your index manually.
$names[0] = "David";
$names[1] = "Amy";
$names[2] = "John";

We defined an array called $names that stores three values.
You can access the array elements through their indices.
echo $names[1]; // Outputs "Amy"

Remember that the first element in an array has the index of 0, not 1.

Numeric Arrays
You can have integers, strings, and other data types together in one array.
Example:
<?php
 $myArray[0] = "John";
 $myArray[1] = "PHP";
 $myArray[2] = 21;

 echo "$myArray[0] is $myArray[2] and knows $myArray[1]";

 // Outputs "John is 21 and knows PHP"
?>

Associative Arrays
Associative arrays are arrays that use named keys that you assign to them.
There are two ways to create an associative array:

$people = array("David"=>"27", "Amy"=>"21", "John"=>"42");
// or
$people['David'] = "27";
$people['Amy'] = "21";
$people['John'] = "42";

In the first example, note the use of the => signs in assigning values to the named keys.

Use the named keys to access the array's members.

$people = array("David"=>"27", "Amy"=>"21", "John"=>"42");
echo $people['Amy']; // Outputs 21"

Conditional Statements
Conditional statements perform different actions for different decisions.

The if else statement is used to execute a certain code if a condition is true, and another code if

the condition is false.

Syntax:

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

You can also use the if statement without the else statement, if you do not need to do anything, in

case the condition is false.

If Else
The example below will output the greatest number of the two.
<?php
 $x = 10;
 $y = 20;
 if ($x >= $y)
 {
 echo $x;
 }
 else
 {
 echo $y;
 }

 // Outputs "20"
?>

The Elseif Statement
Use the if...elseif...else statement to specify a new condition to test, if the first condition is false.

Syntax:

if (condition)

{

 code to be executed if condition is true;

}

elseif (condition)

{

 code to be executed if condition is true;

}

else

{

 code to be executed if condition is false;

}

You can add as many elseif statements as you want. Just note, that the elseif statement must

begin with an if statement.

The Elseif Statement

For example:
<?php
 $age = 21;

 if ($age<=13)
 {
 echo "Child.";
 }
 elseif ($age>13 && $age<19)
 {
 echo "Teenager";
 }
 else
 {
 echo "Adult";
 }

 //Outputs "Adult"
?>

We used the logical AND (&&) operator to combine the two conditions and check to determine

whether $age is between 13 and 19.

Loops
When writing code, you may want the same block of code to run over and over again. Instead of

adding several almost equal code-lines in a script, we can use loops to perform a task like this.

The while Loop
The while loop executes a block of code as long as the specified condition is true.

Syntax:

while (condition is true)

{

 code to be executed;

}

If the condition never becomes false, the statement will continue to execute indefinitely.

The while Loop
The example below first sets a variable $i to one ($i = 1). Then, the while loop runs as long as $i
is less than seven ($i < 7). $i will increase by one each time the loop runs ($i++):
$i = 1;
while ($i < 7)
{
 echo "The value is $i
";
 $i++;
}

This produces the following result:

The do...while Loop

The do...while loop will always execute the block of code once, check the condition, and repeat
the loop as long as the specified condition is true.

Syntax:
do
{
 code to be executed;
} while (condition is true);

Regardless of whether the condition is true or false, the code will be executed at least once,

which could be needed in some situations.

The do...while Loop
The example below will write some output, and then increment the variable $i by one. Then the
condition is checked, and the loop continues to run, as long as $i is less than or equal to 7.
$i = 5;
do
{
 echo "The number is " . $i . "
";
 $i++;
} while($i <= 7);

//Output
//The number is 5
//The number is 6
//The number is 7

Note that in a do while loop, the condition is tested AFTER executing the statements within the

loop. This means that the do while loop would execute its statements at least once, even if the

condition is false the first time.

The for Loop
The for loop is used when you know in advance how many times the script should run.

for (init; test; increment)

{

 code to be executed;

}

Parameters:

init: Initialize the loop counter value

test: Evaluates each time the loop is iterated, continuing if evaluates to true, and ending if it

evaluates to false

increment: Increases the loop counter value

Each of the parameter expressions can be empty or contain multiple expressions that are

separated with commas.

In the for statement, the parameters are separated with semicolons.

The for Loop
The example below displays the numbers from 0 to 5:
for ($a = 0; $a < 6; $a++) {
 echo "Value of a : ". $a . "
";
}

Result:

The for loop in the example above first sets the variable $a to 0, then checks for the condition ($a

< 6). If the condition is true, it runs the code. After that, it increments $a ($a++).

The foreach Loop
The foreach loop works only on arrays, and is used to loop through each key/value pair in
an array.
There are two syntaxes:
foreach (array as $value)
{
 code to be executed;
}
//or
foreach (array as $key => $value)
{
 code to be executed;
}

The first form loops over the array. On each iteration, the value of the current element is assigned
to $value, and the array pointer is moved by one, until it reaches the last array element.
The second form will additionally assign the current element's key to the $key variable on each
iteration.

The following example demonstrates a loop that outputs the values of the $names array.
$names = array("John", "David", "Amy");
foreach ($names as $name)
{
 echo $name.'
';
}

// John
// David
// Amy

The switch Statement

The switch statement is an alternative to the if-elseif-else statement.
Use the switch statement to select one of a number of blocks of code to be executed.

Syntax:
switch (n)
{
 case value1:
 //code to be executed if n=value1
 break;
 case value2:
 //code to be executed if n=value2
 break;
 ...
 default:
 // code to be executed if n is different from all labels
}
First, our single expression, n (most often a variable), is evaluated once. Next, the value of the
expression is compared with the value of each case in the structure. If there is a match, the block
of code associated with that case is executed.

Using nested if else statements results in similar behavior, but switch offers a more elegant and
optimal solution.

Switch
Consider the following example, which displays the appropriate message for each day.
$today = 'Tue';

switch ($today)
{
 case "Mon":
 echo "Today is Monday.";
 break;
 case "Tue":
 echo "Today is Tuesday.";
 break;
 case "Wed":
 echo "Today is Wednesday.";
 break;
 case "Thu":
 echo "Today is Thursday.";
 break;
 case "Fri":
 echo "Today is Friday.";
 break;
 case "Sat":
 echo "Today is Saturday.";
 break;
 case "Sun":
 echo "Today is Sunday.";
 break;
 default:
 echo "Invalid day.";
}
//Outputs "Today is Tuesday."

The break keyword that follows each case is used to keep the code from automatically running

into the next case. If you forget the break; statement, PHP will automatically continue through the

next case statements, even when the case doesn't match.

default
The default statement is used if no match is found.
$x=5;
switch ($x)
{
 case 1:
 echo "One";
 break;
 case 2:
 echo "Two";
 break;
 default:
 echo "No match";
}
//Outputs "No match"

The default statement is optional, so it can be omitted.

Switch

Failing to specify the break statement causes PHP to continue to executing the statements that
follow the case, until it finds a break. You can use this behavior if you need to arrive at the same
output for more than one case.
$day = 'Wed';

switch ($day)
{
 case 'Mon':
 echo 'First day of the week';
 break;
 case 'Tue':
 case 'Wed':
 case 'Thu':
 echo 'Working day';
 break;
 case 'Fri':
 echo 'Friday!';
 break;
 default:
 echo 'Weekend!';
}
//Outputs "Working day"

The example above will have the same output if $day equals 'Tue', 'Wed', or 'Thu'.

The break Statement
As discussed in the previous lesson, the break statement is used to break out of the switch when
a case is matched.
If the break is absent, the code keeps running. For example:
$x=1;
switch ($x)
{
 case 1:
 echo "One";
 case 2:
 echo "Two";
 case 3:
 echo "Three";
 default:
 echo "No match";
}

//Outputs "OneTwoThreeNo match"

Break can also be used to halt the execution of for, foreach, while, do-while structures.

The break statement ends the current for, foreach, while, do-while or switch and continues to

run the program on the line coming up after the loop.

A break statement in the outer part of a program (e.g., not in a control loop) will stop the script.

The continue Statement

When used within a looping structure, the continue statement allows for skipping over what
remains of the current loop iteration. It then continues the execution at the condition evaluation
and moves on to the beginning of the next iteration.

The following example skips the even numbers in the for loop:
for ($i=0; $i<10; $i++)
{
 if ($i%2==0)
 {
 continue;
 }
 echo $i . ' ';
}

//Output: 1 3 5 7 9

You can use the continue statement with all looping structures.

include
The include and require statements allow for the insertion of the content of one PHP file into

another PHP file, before the server executes it.

Including files saves quite a bit of work. You can create a standard header, footer, or menu file for

all of your web pages. Then, when the header is requiring updating, you can update the header

include file only.

Assume that we have a standard header file called header.php.

<?php

 echo '<h1>Welcome</h1>';

?>

Use the include statement to include the header file in a page.

<html>

<body>

 <?php include 'header.php'; ?>

 <p>Some text.</p>

 <p>Some text.</p>

</body>

</html>

include
Using this approach, we have the ability to include the same header.php file into multiple pages.

<html>

<body>

 <?php include 'header.php'; ?>

 <p>This is a paragraph</p>

</body>

</html>

Result:

Files are included based on the file path.

You can use an absolute or a relative path to specify which file should be included.

include vs require
The require statement is identical to include, the exception being that, upon failure, it produces a

fatal error.

When a file is included using the include statement, but PHP is unable to find it, the script

continues to execute.

In the case of require, the script will cease execution and produce an error.

Use require when the file is required for the application to run.

Use include when the file is not required. The application should continue, even when the file is

not found.

Functions
A function is a block of statements that can be used repeatedly in a program.

A function will not execute immediately when a page loads. It will be executed by a call to the

function.

A user defined function declaration starts with the word function:

function functionName()

{

 //code to be executed

}

A function name can start with a letter or an underscore, but not with a number or a special

symbol.

Function names are NOT case-sensitive.

Functions
In the example below, we create the function sayHello(). The opening curly brace ({) indicates that
this is the beginning of the function code, while the closing curly brace (}) indicates that this is the
end.
To call the function, just write its name:
function sayHello()
{
 echo "Hello!";
}

sayHello(); //call the function

//Outputs "Hello!"

Function Parameters
Information can be passed to functions through arguments, which are like variables.
Arguments are specified after the function name, and within the parentheses.
Here, our function takes a number, multiplies it by two, and prints the result:

function multiplyByTwo($number)
{
 $answer = $number * 2;
 echo $answer;
}

multiplyByTwo(3); //Outputs 6

You can add as many arguments as you want, as long as they are separated with commas.
function multiply($num1, $num2)
{
 echo $num1 * $num2;
}

multiply(3, 6); //Outputs 18

When you define a function, the variables that represent the values that will be passed to it for

processing are called parameters. However, when you use a function, the value you pass to it is

called an argument.

Function Parameters
Information can be passed to functions through arguments, which are like variables.
Arguments are specified after the function name, and within the parentheses.
Here, our function takes a number, multiplies it by two, and prints the result:
function multiplyByTwo($number)
{
 $answer = $number * 2;
 echo $answer;
}

multiplyByTwo(3); //Outputs 6

You can add as many arguments as you want, as long as they are separated with commas.
function multiply($num1, $num2)
{
 echo $num1 * $num2;
}

multiply(3, 6); //Outputs 18

When you define a function, the variables that represent the values that will be passed to it for

processing are called parameters. However, when you use a function, the value you pass to it is

called an argument.

Return
A function can return a value using the return statement.
Return stops the function's execution, and sends the value back to the calling code.
For example:
function mult($num1, $num2)
{
 $res = $num1 * $num2;
 return $res;
}

echo mult(8, 3); // Outputs 24

Leaving out the return results in a NULL value being returned.

A function cannot return multiple values, but returning an array will produce similar results.

Predefined Variables
A superglobal is a predefined variable that is always accessible, regardless of scope. You can
access the PHP superglobals through any function, class, or file.

PHP's superglobal variables are $_SERVER, $GLOBALS, $_REQUEST, $_POST, $_GET,
$_FILES, $_ENV, $_COOKIE, $_SESSION.

$_SERVER
$_SERVER is an array that includes information such as headers, paths, and script locations. The
entries in this array are created by the web server.
$_SERVER['SCRIPT_NAME'] returns the path of the current script:
<?php
 echo $_SERVER['SCRIPT_NAME'];
 //Outputs "/somefile.php"
?>

This graphic shows the main elements of $_SERVER.

Forms
The purpose of the PHP superglobals $_GET and $_POST is to collect data that has been

entered into a form.

The example below shows a simple HTML form that includes two input fields and a submit button:

<form action="first.php" method="post">

 <p>Name: <input type="text" name="name" /></p>

 <p>Age: <input type="text" name="age" /></p>

 <p><input type="submit" name="submit" value="Submit" /></p>

</form>

Result:

Forms
The action attribute specifies that when the form is submitted, the data is sent to a PHP file

named first.php.

HTML form elements have names, which will be used when accessing the data with PHP.

The method attribute is set to the value to "post".

Forms
Now, when we have an HTML form with the action attribute set to our PHP file, we can access the

posted form data using the $_POST associative array.

In the first.php file:

<html>

<body>

 Welcome <?php echo $_POST["name"]; ?>

 Your age: <?php echo $_POST["age"]; ?>

</body>

</html>

The $_POST superglobal array holds key/value pairs. In the pairs, keys are the names of the form

controls and values are the input data entered by the user.

We used the $_POST array, as the method="post" was specified in the form.

POST
The two methods for submitting forms are GET and POST.

Information sent from a form via the POST method is invisible to others, since all names and/or

values are embedded within the body of the HTTP request. Also, there are no limits on the amount

of information to be sent.

However, it is not possible to bookmark the page, as the submitted values are not visible.

POST is the preferred method for sending form data.

GET
Information sent via a form using the GET method is visible to everyone (all variable names and

values are displayed in the URL). GET also sets limits on the amount of information that can be

sent - about 2000 characters (depending on the browser).

However, because the variables are displayed in the URL, it is possible to bookmark the page,

which can be useful in some situations.

For example:

<form action="actionGet.php" method="get">

 Name: <input type="text" name="name" />

 Age: <input type="text" name="age" />

 <input type="submit" name="submit" value="Submit" />

</form>

actionGet.php

<?php

 echo "Hi ".$_GET['name'].". ";

 echo "You are ".$_GET['age']." years old.";

?>

Now, the form is submitted to the actionGet.php, and you can see the submitted data in the URL:

GET should NEVER be used for sending passwords or other sensitive information!

When using POST or GET, proper validation of form data through filtering and processing

is vitally important to protect your form from hackers and exploits!

Cookies

Cookies are often used to identify the user. A cookie is a small file that the server embeds on the
user's computer. Each time the same computer requests a page through a browser, it will send
the cookie, too. With PHP, you can both create and retrieve cookie values.

Create cookies using the setcookie() function:
setcookie(name, value, expire);

name: Specifies the cookie's name
value: Specifies the cookie's value
expire: Specifies (in seconds) when the cookie is to expire. The value: time()+86400*30, will set
the cookie to expire in 30 days. If this parameter is omitted or set to 0, the cookie will expire at the
end of the session (when the browser closes). Default is 0.

The following example creates a cookie named "user" with the value "John". The cookie will expire

after 30 days, which is written as 86,400 * 30, in which 86,400 seconds = one day.

We then retrieve the value of the cookie "user" (using the global variable $_COOKIE). We also

use the isset() function to find out if the cookie is set:

<?php

 $value = "John";

 setcookie("user", $value, time() + (86400 * 30));

 if(isset($_COOKIE['user']))

 {

 echo "Value is: ". $_COOKIE['user'];

 }

 //Outputs "Value is: John"

?>

The setcookie() function must appear BEFORE the <html> tag.

The value of the cookie is automatically encoded when the cookie is sent, and is automatically

decoded when it's received. Nevertheless, NEVER store sensitive information in cookies.

Sessions
Using a session, you can store information in variables, to be used across multiple pages.
Information is not stored on the user's computer, as it is with cookies.
By default, session variables last until the user closes the browser.

Start a PHP Session
A session is started using the session_start() function.

Use the PHP global $_SESSION to set session variables.

<?php

 // Start the session

 session_start();

 $_SESSION['color'] = "red";

 $_SESSION['name'] = "John";

?>

Now, the color and name session variables are accessible on multiple pages, throughout the

entire session.

The session_start() function must be the very first thing in your document. Before any HTML

tags.

Session Variables

Another page can be created that can access the session variables we set in the previous page:
<?php
 // Start the session
 session_start();
?>
<!DOCTYPE html>
<html>
<body>
 <?php
 echo "Your name is " . $_SESSION['name'];
 // Outputs "Your name is John"
 ?>
</body>
</html>

Your session variables remain available in the $_SESSION superglobal until you close your
session.
All global session variables can be removed manually by using session_unset(). You can also
destroy the session with session_destroy().

A Database
A database is a collection of data that is organized in a manner that facilitates ease of access, as

well as efficient management and updating.

A database is made up of tables that store relevant information.

For example, you would use a database, if you were to create a website like YouTube, which

contains a lot of information like videos, usernames, passwords, comments.

Database Tables
A table stores and displays data in a structured format consisting of columns and rows.

Databases often contain multiple tables, each designed for a specific purpose.

For example, imagine creating a database table of names and telephone numbers.

First, we would set up columns with the titles FirstName, LastName and TelephoneNumber.

Each table includes its own set of fields, based on the data it will store.

Primary Keys

A primary key is a field in the table that uniquely identifies the table records.

The primary key's main features:
- It must contain a unique value for each row.
- It cannot contain NULL values.

For example, our table contains a record for each name in a phone book. The unique ID number
would be a good choice for a primary key in the table, as there is always the chance for more than
one person to have the same name.

- Tables are limited to ONE primary key each.
- The primary key's value must be different for each row.

What is SQL?
Once you understand what a database is, understanding SQL is easy.

SQL stands for Structured Query Language.

SQL is used to access and manipulate a database.

MySQL is a program that understands SQL.

SQL can:

- insert, update, or delete records in a database.

- create new databases, table, stored procedures, views.

- retrieve data from a database, etc.

SQL is an ANSI (American National Standards Institute) standard, but there are different versions

of the SQL language.

Most SQL database programs have their own proprietary extensions in addition to the SQL

standard, but all of them support the major commands.

SQL Commands - SELECT Statement

The SELECT statement is used to select data from a database.
The result is stored in a result table, which is called the result-set.

A query may retrieve information from selected columns or from all columns in the table. To
create a simple SELECT statement, specify the name(s) of the column(s) you need from the table.

Syntax of the SQL SELECT Statement:
SELECT column_list
FROM table_name

- column_list includes one or more columns from which data is retrieved
- table-name is the name of the table from which the information is retrieved

Below is the data from our customers table:

The following SQL statement selects the FirstName from the customers table:
SELECT FirstName
FROM customers

Remember to end each SQL statement with a semicolon to indicate that the statement is
complete and ready to be interpreted.
In this tutorial, we will use semicolon at the end of each SQL statement.

Case Sensitivity
SQL is case insensitive.
The following statements are equivalent and will produce the same result:
select City from customers;
SELECT City FROM customers;
sElEct City From customers;

It is common practice to write all SQL commands in upper-case.

Syntax Rules
A single SQL statement can be placed on one or more text lines. In addition, multiple SQL
statements can be combined on a single text line.
For example, the following query is absolutely correct.
SELECT City
FROM customers;

Combined with proper spacing and indenting, breaking up the commands into logical lines will
make your SQL statements much easier to read and maintain.

Selecting Multiple Columns
As previously mentioned, the SQL SELECT statement retrieves records from tables in your SQL

database. You can select multiple table columns at once.

Just list the column names, separated by commas:

SELECT FirstName, LastName, City

FROM customers;

Result:

Do not put a comma after the last column name.

Selecting All Columns
To retrieve all of the information contained in your table, place an asterisk (*) sign after

the SELECT command, rather than typing in each column names separately.

The following SQL statement selects all of the columns in the customers table:

SELECT * FROM customers;

Result:

In SQL, the asterisk means all.

The DISTINCT Keyword

In situations in which you have multiple duplicate records in a table, it might make more sense to

return only unique records, instead of fetching the duplicates.

The SQL DISTINCT keyword is used in conjunction with SELECT to eliminate all duplicate records

and return only unique ones.

The basic syntax of DISTINCT is as follows:

SELECT DISTINCT column_name1, column_name2
FROM table_name;

See the customers table below:

Note that there are duplicate City names. The following SQL statement selects only distinct values
from the City column:

SELECT DISTINCT City FROM customers;

This would produce the following result. Duplicate entries have been removed.

The LIMIT Keyword
By default, all results that satisfy the conditions specified in the SQL statement are returned.

However, sometimes we need to retrieve just a subset of records. In MySQL, this is accomplished

by using the LIMIT keyword.

The syntax for LIMIT is as follows:

SELECT column list

FROM table_name

LIMIT [number of records];

For example, we can retrieve the first five records from the customers table.

SELECT ID, FirstName, LastName, City

FROM customers LIMIT 5;

This would produce the following result:

Fully Qualified Names
In SQL, you can provide the table name prior to the column name, by separating them with a dot.
The following statements are equivalent:
SELECT City FROM customers;
SELECT customers.City FROM customers;

The term for the above-mentioned syntax is called the "fully qualified name" of that column.

This form of writing is especially useful when working with multiple tables that may share the same
column names.

Order By

ORDER BY is used with SELECT to sort the returned data.

The following example sorts our customers table by the FirstName column.
SELECT * FROM customers
ORDER BY FirstName;

Result:

As you can see, the rows are ordered alphabetically by the FirstName column.

By default, the ORDER BY keyword sorts the results in ascending order.

Sorting Multiple Columns
ORDER BY can sort retrieved data by multiple columns. When using ORDER BY with more than
one column, separate the list of columns to follow ORDER BY with commas.
Here is the customers table, showing the following records:

To order by LastName and Age:
SELECT * FROM customers
ORDER BY LastName, Age;

This ORDER BY statement returns the following result:

As we have two Smiths, they will be ordered by the Age column in ascending order.

The ORDER BY command starts ordering in the same sequence as the columns. It will order by
the first column listed, then by the second, and so on.

The WHERE Statement
The WHERE clause is used to extract only those records that fulfill a specified criterion.

The syntax for the WHERE clause:

SELECT column_list

FROM table_name

WHERE condition;

Consider the following table:

In the above table, to SELECT a specific record:

SELECT * FROM customers

WHERE ID = 7;

SQL Operators
Comparison Operators and Logical Operators are used in the WHERE clause to filter
the data to be selected.

The following comparison operators can be used in the WHERE clause:

For example, we can display all customers names listed in our table, with the exception of
the one with ID 5.
SELECT * FROM customers
WHERE ID != 5;

Result:

As you can see, the record with ID=5 is excluded from the list.

The BETWEEN Operator
The BETWEEN operator selects values within a range. The first value must be lower bound and

the second value, the upper bound.

The syntax for the BETWEEN clause is as follows:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

The following SQL statement selects all records with IDs that fall between 3 and 7:

SELECT * FROM customers

WHERE ID BETWEEN 3 AND 7;

Result:

Text Values
When working with text columns, surround any text that appears in the statement with single
quotation marks (').

The following SQL statement selects all records in which the City is equal to 'New York'.
SELECT ID, FirstName, LastName, City
FROM customers
WHERE City = 'New York';

Logical Operators
Logical operators can be used to combine two Boolean values and return a result of true, false,

or null. The following operators can be used:

When retrieving data using a SELECT statement, use logical operators in the WHERE clause to

combine multiple conditions.

If you want to select rows that satisfy all of the given conditions, use the logical operator, AND.

To find the names of the customers between 30 to 40 years of age, set up the query as seen here:

SELECT ID, FirstName, LastName, Age

FROM customers

WHERE Age >= 30 AND Age <= 40;

This results in the following output:

You can combine as many conditions as needed to return the desired results.

OR
If you want to select rows that satisfy at least one of the given conditions, you can use the
logical OR operator.

The following table describes how the logical OR operator functions:

For example, if you want to find the customers who live either in New York or Chicago, the query
would look like this:
SELECT * FROM customers
WHERE City = 'New York' OR City = 'Chicago';

Result:

Combining AND & OR
The SQL AND and OR conditions may be combined to test multiple conditions in a query.

When combining these conditions, it is important to use parentheses, so that the order to
evaluate each condition is known.

Consider the following table:

The statement below selects all customers from the city "New York" AND with the age equal to
"30" OR “35":
SELECT * FROM customers
WHERE City = 'New York'
AND (Age=30 OR Age=35);

Result:

You can nest as many conditions as you need.

The IN Operator
The IN operator is used when you want to compare a column with more than one value.
For example, you might need to select all customers from New York, Los Angeles, and Chicago.
With the OR condition, your SQL would look like this:
SELECT * FROM customers
WHERE City = 'New York'
OR City = 'Los Angeles'
OR City = 'Chicago';

Result:

The IN Operator
You can achieve the same result with a single IN condition, instead of the multiple OR conditions:

SELECT * FROM customers

WHERE City IN ('New York', 'Los Angeles', 'Chicago');

This would also produce the same result:

Note the use of parentheses in the syntax.

The NOT IN Operator
The NOT IN operator allows you to exclude a list of specific values from the result set.

If we add the NOT keyword before IN in our previous query, customers living in those cities will be

excluded:

SELECT * FROM customers

WHERE City NOT IN ('New York', 'Los Angeles', 'Chicago');

Result:

The CONCAT Function
The CONCAT function is used to concatenate two or more text values and returns the
concatenating string.
Let's concatenate the FirstName with the City, separating them with a comma:
SELECT CONCAT(FirstName, ', ' , City) FROM customers;

The output result is:

The AS Keyword
A concatenation results in a new column. The default column name will be the CONCAT function.

You can assign a custom name to the resulting column using the AS keyword:

SELECT CONCAT(FirstName,', ', City) AS new_column

FROM customers;

And when you run the query, the column name appears to be changed.

AVG

The AVG function returns the average value of a numeric column:

SELECT AVG(Salary) FROM employees;

Result:

The SUM function
The SUM function is used to calculate the sum for a column's values.

For example, to get the sum of all of the salaries in the employees table, our SQL query would

look like this:

SELECT SUM(Salary) FROM employees;

Result:

The sum of all of the employees' salaries is 31000.

The Like Operator
The LIKE keyword is useful when specifying a search condition within your WHERE clause.

SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern;

SQL pattern matching enables you to use "_" to match any single character and "%" to match an

arbitrary number of characters (including zero characters).

For example, to select employees whose FirstNames begin with the letter A, you would use the

following query:

SELECT * FROM employees

WHERE FirstName LIKE 'A%';

Result:

As another example, the following SQL query selects all employees with a LastName ending with

the letter "s":

SELECT * FROM employees

WHERE LastName LIKE '%s';

Result:

The % wildcard can be used multiple times within the same pattern.

The MIN Function
The MIN function is used to return the minimum value of an expression in a SELECT statement.
For example, you might wish to know the minimum salary among the employees.
SELECT MIN(Salary) AS Salary FROM employees;

All of the SQL functions can be combined together to create a single expression.

